Module sumeh.engine.pyspark_engine
¶
This module provides a set of functions for performing data quality checks on PySpark DataFrames. It includes various validation rules, schema validation, and summarization utilities.
Functions:
Name | Description |
---|---|
is_positive |
Filters rows where the specified field is negative and adds a data quality status column. |
is_negative |
Filters rows where the specified field is non-negative and adds a data quality status column. |
is_in_millions |
Retains rows where the field value is at least 1,000,000 and flags them with dq_status. |
is_positive |
Filters rows where the specified field is negative and adds a data quality status column. |
is_negative |
Filters rows where the specified field is non-negative and adds a data quality status column. |
is_in_millions |
Retains rows where the field value is at least 1,000,000 and flags them with dq_status. |
is_in_billions |
Retains rows where the field value is at least 1,000,000,000 and flags them with dq_status. |
is_t_minus_1 |
Retains rows where the date field equals yesterday (T-1) and flags them with dq_status. |
is_t_minus_2 |
Retains rows where the date field equals two days ago (T-2) and flags them with dq_status. |
is_t_minus_3 |
Retains rows where the date field equals three days ago (T-3) and flags them with dq_status. |
is_today |
Retains rows where the date field equals today and flags them with dq_status. |
is_yesterday |
Retains rows where the date field equals yesterday and flags them with dq_status. |
is_on_weekday |
Retains rows where the date field falls on a weekday (Mon-Fri) and flags them with dq_status. |
is_on_weekend |
Retains rows where the date field is on a weekend (Sat-Sun) and flags them with dq_status. |
is_on_monday |
Retains rows where the date field is on Monday and flags them with dq_status. |
is_on_tuesday |
Retains rows where the date field is on Tuesday and flags them with dq_status. |
is_on_wednesday |
Retains rows where the date field is on Wednesday and flags them with dq_status. |
is_on_thursday |
Retains rows where the date field is on Thursday and flags them with dq_status. |
is_on_friday |
Retains rows where the date field is on Friday and flags them with dq_status. |
is_on_saturday |
Retains rows where the date field is on Saturday and flags them with dq_status. |
is_on_sunday |
Retains rows where the date field is on Sunday and flags them with dq_status. |
is_complete |
Filters rows where the specified field is null and adds a data quality status column. |
is_unique |
Identifies duplicate rows based on the specified field and adds a data quality status column. |
are_complete |
Filters rows where any of the specified fields are null and adds a data quality status column. |
are_unique |
Identifies duplicate rows based on a combination of specified fields and adds a data quality status column. |
is_greater_than |
Filters rows where the specified field is less than or equal to the given value. |
is_greater_or_equal_than |
Filters rows where the specified field is less than the given value. |
is_less_than |
Filters rows where the specified field is greater than or equal to the given value. |
is_less_or_equal_than |
Filters rows where the specified field is greater than the given value. |
is_equal |
Filters rows where the specified field is not equal to the given value. |
is_equal_than |
Alias for |
is_contained_in |
Filters rows where the specified field is not in the given list of values. |
not_contained_in |
Filters rows where the specified field is in the given list of values. |
is_between |
Filters rows where the specified field is not within the given range. |
has_pattern |
Filters rows where the specified field does not match the given regex pattern. |
is_legit |
Filters rows where the specified field is null or does not match a non-whitespace pattern. |
is_primary_key |
DataFrame, rule: dict): |
is_composite_key |
DataFrame, rule: dict): |
has_max |
Filters rows where the specified field exceeds the given maximum value. |
has_min |
Filters rows where the specified field is below the given minimum value. |
has_std |
Checks if the standard deviation of the specified field exceeds the given value. |
has_mean |
Checks if the mean of the specified field exceeds the given value. |
has_sum |
Checks if the sum of the specified field exceeds the given value. |
has_cardinality |
Checks if the cardinality (distinct count) of the specified field exceeds the given value. |
has_infogain |
Checks if the information gain (distinct count) of the specified field exceeds the given value. |
has_entropy |
Checks if the entropy (distinct count) of the specified field exceeds the given value. |
all_date_checks |
Filters rows where the specified date field is earlier than the current date. |
satisfies |
Filters rows where the specified field matches the given regex pattern. |
validate |
Applies a list of validation rules to the DataFrame and returns the results. |
summarize |
Summarizes the results of data quality checks, including pass rates and violations. |
validate_schema |
Validates the schema of the DataFrame against the expected schema. |
__rules_to_df |
Converts a list of rules into a DataFrame for further processing. |
__pyspark_schema_to_list |
Converts the schema of a DataFrame into a list of dictionaries for comparison. |
__compare_schemas(actual, expected)
¶
Compare two lists of schema definitions and identify discrepancies.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
actual
|
List[SchemaDef]
|
The list of actual schema definitions. |
required |
expected
|
List[SchemaDef]
|
The list of expected schema definitions. |
required |
Returns:
Type | Description |
---|---|
bool
|
Tuple[bool, List[Tuple[str, str]]]: A tuple where the first element is a boolean indicating |
List[Tuple[str, str]]
|
whether the schemas match (True if they match, False otherwise), and the second element |
Tuple[bool, List[Tuple[str, str]]]
|
is a list of tuples describing the discrepancies. Each tuple contains: - The field name (str). - A description of the discrepancy (str), such as "missing", "type mismatch", "nullable but expected non-nullable", or "extra column". |
Notes
- A field is considered "missing" if it exists in the expected schema but not in the actual schema.
- A "type mismatch" occurs if the data type of a field in the actual schema does not match the expected data type.
- A field is considered "nullable but expected non-nullable" if it is nullable in the actual schema but not nullable in the expected schema.
- An "extra column" is a field that exists in the actual schema but not in the expected schema.
Source code in sumeh/services/utils.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|
__convert_value(value)
¶
Converts the provided value to the appropriate type (date, float, or int).
Depending on the format of the input value, it will be converted to a datetime object, a floating-point number (float), or an integer (int).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value
|
str
|
The value to be converted, represented as a string. |
required |
Returns:
Type | Description |
---|---|
Union[datetime, float, int]: The converted value, which can be a datetime object, float, or int. |
Raises:
Type | Description |
---|---|
ValueError
|
If the value does not match an expected format. |
Source code in sumeh/services/utils.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
|
__extract_params(rule)
¶
Source code in sumeh/services/utils.py
38 39 40 41 42 43 44 45 46 47 48 49 50 |
|
__pyspark_schema_to_list(df)
¶
Convert the schema of a PySpark DataFrame into a list of dictionaries.
Each dictionary in the output list represents a field in the DataFrame schema and contains the following keys: - "field": The name of the field. - "data_type": The data type of the field as a lowercase string. - "nullable": A boolean indicating whether the field allows null values. - "max_length": Always set to None (reserved for future use).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The PySpark DataFrame whose schema is to be converted. |
required |
Returns:
Type | Description |
---|---|
List[Dict[str, Any]]
|
List[Dict[str, Any]]: A list of dictionaries representing the schema of the DataFrame. |
Source code in sumeh/engine/pyspark_engine.py
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 |
|
__rules_to_df(rules)
¶
Converts a list of rule dictionaries into a PySpark DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rules
|
List[Dict]
|
A list of dictionaries where each dictionary represents a rule. Each rule dictionary should contain the following keys: - "field" (str or list): The name of the field or a list of field names. - "check_type" (str): The type of rule or check to be applied. - "threshold" (float, optional): The threshold value for the rule. Defaults to 1.0 if not provided. - "value" (str, optional): The value associated with the rule. Defaults to "N/A" if not provided. - "execute" (bool, optional): A flag indicating whether the rule should be executed. Defaults to True. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A PySpark DataFrame containing the following columns: - "column" (str): The name of the field. - "rule" (str): The type of rule or check. - "pass_threshold" (float): The threshold value for the rule. - "value" (str): The value associated with the rule. |
Notes
- Rows with "execute" set to False are skipped.
- Duplicate rows based on the "column" and "rule" columns are removed.
Source code in sumeh/engine/pyspark_engine.py
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 |
|
__transform_date_format_in_pattern(date_format)
¶
Source code in sumeh/services/utils.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
all_date_checks(df, rule)
¶
Filters the input DataFrame based on a date-related rule and adds a data quality status column.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be filtered. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field': The name of the column to apply the rule on. - 'check': The type of check to perform (e.g., comparison operator). - 'value': The value to be used in the check. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame filtered based on the rule, with an additional column |
DataFrame
|
"dq_status" indicating the data quality status in the format "field:check:value". |
Source code in sumeh/engine/pyspark_engine.py
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 |
|
are_complete(df, rule)
¶
Filters rows in a DataFrame that do not meet the completeness rule and adds a data quality status column.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be checked. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - "fields" (list): A list of column names to check for completeness (non-null values). - "check" (str): A descriptive label for the type of check being performed. - "value" (str): A descriptive value associated with the check. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame containing only the rows that fail the completeness check, |
DataFrame
|
with an additional column "dq_status" describing the failed rule. |
Source code in sumeh/engine/pyspark_engine.py
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
|
are_unique(df, rule)
¶
Checks for uniqueness of specified fields in a PySpark DataFrame based on the provided rule.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be checked. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'fields': A list of column names to check for uniqueness. - 'check': A string representing the type of check (e.g., "unique"). - 'value': A value associated with the rule for logging or identification. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A DataFrame containing rows that violate the uniqueness rule. |
DataFrame
|
The resulting DataFrame includes an additional column |
|
DataFrame
|
describes the rule violation in the format: "[fields]:[check]:[value]". |
Notes
- The function concatenates the specified fields into a single column and checks for duplicate values within that column.
- Rows that do not meet the uniqueness criteria are returned, while rows that satisfy the criteria are excluded from the result.
Source code in sumeh/engine/pyspark_engine.py
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
|
has_cardinality(df, rule)
¶
Checks the cardinality of a specified field in a DataFrame against a given rule.
This function evaluates whether the distinct count of values in a specified column
(field) of the DataFrame exceeds a given threshold (value) as defined in the rule.
If the cardinality exceeds the threshold, a new column dq_status
is added to the
DataFrame with information about the rule violation. Otherwise, an empty DataFrame
is returned.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be checked. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field': The name of the column to check. - 'check': The type of check being performed (e.g., "cardinality"). - 'value': The threshold value for the cardinality. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A DataFrame with the |
DataFrame
|
exceeds the threshold, or an empty DataFrame if the condition is not met. |
Source code in sumeh/engine/pyspark_engine.py
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 |
|
has_entropy(df, rule)
¶
Evaluates the entropy of a specified field in a DataFrame and applies a rule to determine whether the DataFrame should be processed further or filtered out.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to evaluate. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field' (str): The name of the column to evaluate. - 'check' (str): The type of check being performed (e.g., "entropy"). - 'value' (float): The threshold value for the entropy check. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
If the entropy of the specified field exceeds the given value, returns the |
DataFrame
|
original DataFrame with an additional column "dq_status" indicating the rule applied. |
|
DataFrame
|
Otherwise, returns an empty DataFrame with the same schema as the input. |
Source code in sumeh/engine/pyspark_engine.py
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 |
|
has_infogain(df, rule)
¶
Evaluates whether a given DataFrame satisfies an information gain condition based on the provided rule. If the condition is met, it appends a column indicating the status; otherwise, it returns an empty DataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to evaluate. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include the following keys: - 'field': The column name to evaluate. - 'check': The condition type (not used directly in the logic). - 'value': The threshold value for information gain. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A DataFrame with an additional "dq_status" column if the information gain condition is met, or an empty DataFrame if the condition is not satisfied. |
Source code in sumeh/engine/pyspark_engine.py
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 |
|
has_max(df, rule)
¶
Filters a PySpark DataFrame to include only rows where the value of a specified field is greater than a given threshold. Adds a new column 'dq_status' to indicate the rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be filtered. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field' (str): The name of the column to apply the rule on. - 'check' (str): The type of check being performed (e.g., 'max'). - 'value' (numeric): The threshold value to compare against. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame filtered based on the rule, with an additional column 'dq_status' |
DataFrame
|
describing the rule applied in the format "field:check:value". |
Source code in sumeh/engine/pyspark_engine.py
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
|
has_mean(df, rule)
¶
Evaluates whether the mean value of a specified column in a DataFrame satisfies a given rule.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to evaluate. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field' (str): The name of the column to calculate the mean for. - 'check' (str): The type of check being performed (e.g., 'greater_than'). - 'value' (float): The threshold value to compare the mean against. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
If the mean value of the specified column exceeds the threshold, |
DataFrame
|
returns the original DataFrame with an additional column |
|
DataFrame
|
the rule violation. If the mean value satisfies the rule, returns an empty DataFrame. |
Source code in sumeh/engine/pyspark_engine.py
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 |
|
has_min(df, rule)
¶
Filters rows in a DataFrame where the value of a specified field is less than a given threshold and adds a new column indicating the data quality status.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be filtered. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field' (str): The name of the column to check. - 'check' (str): The type of check being performed (e.g., "min"). - 'value' (numeric): The threshold value for the check. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame with rows filtered based on the rule and an additional |
DataFrame
|
"dq_status" column containing a string representation of the rule applied. |
Source code in sumeh/engine/pyspark_engine.py
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 |
|
has_pattern(df, rule)
¶
Filters a PySpark DataFrame based on a pattern match and adds a data quality status column.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be filtered. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field': The name of the column to apply the pattern check. - 'check': A descriptive label for the type of check being performed. - 'value': The regex pattern to match against the column values. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame with rows that do not match the pattern filtered out. Additionally, a "dq_status" column is added, containing a string representation of the rule applied in the format "field:check:value". |
Source code in sumeh/engine/pyspark_engine.py
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 |
|
has_std(df, rule)
¶
Checks if the standard deviation of a specified field in a DataFrame exceeds a given value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field' (str): The name of the column to calculate the standard deviation for. - 'check' (str): A descriptive label for the check being performed. - 'value' (float): The threshold value for the standard deviation. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
If the standard deviation of the specified field exceeds the given value, |
DataFrame
|
returns the original DataFrame with an additional column "dq_status" indicating the |
|
DataFrame
|
field, check, and value. Otherwise, returns an empty DataFrame. |
Source code in sumeh/engine/pyspark_engine.py
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 |
|
has_sum(df, rule)
¶
Checks if the sum of values in a specified column of a DataFrame exceeds a given threshold.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to evaluate. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field' (str): The name of the column to sum. - 'check' (str): A descriptive label for the check being performed. - 'value' (float): The threshold value to compare the sum against. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
If the sum of the specified column exceeds the threshold, returns the original |
DataFrame
|
DataFrame with an additional column |
|
DataFrame
|
does not exceed the threshold, returns an empty DataFrame. |
Source code in sumeh/engine/pyspark_engine.py
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 |
|
is_between(df, rule)
¶
Filters rows in a PySpark DataFrame where the value of a specified field is not within a given range. Adds a new column 'dq_status' to indicate the rule that was applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field': The name of the column to check. - 'check': A string representing the type of check (e.g., "between"). - 'value': A string representing the range in the format "[min_value,max_value]". |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame with rows filtered based on the rule and an additional |
DataFrame
|
'dq_status' column indicating the applied rule. |
Source code in sumeh/engine/pyspark_engine.py
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 |
|
is_complete(df, rule)
¶
Filters a DataFrame to identify rows where a specified field is null and adds a "dq_status" column indicating the data quality rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be checked. |
required |
rule
|
dict
|
A dictionary containing the data quality rule. It should include: - "field" (str): The name of the field to check for null values. - "check" (str): A description of the check being performed. - "value" (str): Additional information about the rule. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame filtered to include only rows where the specified |
DataFrame
|
field is null, with an additional "dq_status" column describing the rule. |
Source code in sumeh/engine/pyspark_engine.py
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
|
is_composite_key(df, rule)
¶
Determines if the given DataFrame satisfies the composite key condition based on the provided rule.
A composite key is a combination of two or more columns in a DataFrame that uniquely identify a row.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The PySpark DataFrame to be evaluated. |
required |
rule
|
dict
|
A dictionary containing the rules or criteria to determine the composite key. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
True if the DataFrame satisfies the composite key condition, False otherwise. |
Source code in sumeh/engine/pyspark_engine.py
817 818 819 820 821 822 823 824 825 826 827 828 829 830 |
|
is_contained_in(df, rule)
¶
Filters rows in a PySpark DataFrame based on whether a specified column's value is not contained in a given list of values. Adds a new column 'dq_status' to indicate the rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to filter. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field': The name of the column to check. - 'check': The type of check being performed (e.g., "is_contained_in"). - 'value': A string representation of a list of values (e.g., "[value1,value2]"). |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new PySpark DataFrame with rows filtered based on the rule |
DataFrame
|
and an additional column 'dq_status' describing the rule applied. |
Example
rule = {"field": "column_name", "check": "is_contained_in", "value": "[value1,value2]"} result_df = is_contained_in(input_df, rule)
Source code in sumeh/engine/pyspark_engine.py
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
|
is_date_after(df, rule)
¶
Filters a DataFrame to identify rows where a specified field has a date lower than the date informed in the rule and adds a "dq_status" column indicating the data quality rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be checked. |
required |
rule
|
dict
|
A dictionary containing the data quality rule. It should include: - "field" (str): The name of the field to check for null values. - "check" (str): A description of the check being performed. - "value" (str): Additional information about the rule. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame filtered to include only rows where the specified |
DataFrame
|
field is null, with an additional "dq_status" column describing the rule. |
Source code in sumeh/engine/pyspark_engine.py
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
|
is_date_before(df, rule)
¶
Filters a DataFrame to identify rows where a specified field has a date greater than the date informed in the rule and adds a "dq_status" column indicating the data quality rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be checked. |
required |
rule
|
dict
|
A dictionary containing the data quality rule. It should include: - "field" (str): The name of the field to check for null values. - "check" (str): A description of the check being performed. - "value" (str): Additional information about the rule. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame filtered to include only rows where the specified |
DataFrame
|
field is null, with an additional "dq_status" column describing the rule. |
Source code in sumeh/engine/pyspark_engine.py
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
|
is_date_between(df, rule)
¶
Filters a DataFrame to identify rows where a specified field has a date between two dates passed in the rule using
the format: "[
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be checked. |
required |
rule
|
dict
|
A dictionary containing the data quality rule. It should include: - "field" (str): The name of the field to check for null values. - "check" (str): A description of the check being performed. - "value" (str): Additional information about the rule. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame filtered to include only rows where the specified |
DataFrame
|
field is null, with an additional "dq_status" column describing the rule. |
Source code in sumeh/engine/pyspark_engine.py
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
|
is_equal(df, rule)
¶
Filters a PySpark DataFrame based on a rule that checks for equality between a specified field and a given value. Rows that do not satisfy the equality condition are retained, and a new column "dq_status" is added to indicate the rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be filtered. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - "field" (str): The name of the column to check. - "check" (str): The type of check (e.g., "equal"). This is used for logging purposes. - "value" (Any): The value to compare against. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame with rows that do not satisfy the equality condition and an |
DataFrame
|
additional "dq_status" column describing the rule applied. |
Source code in sumeh/engine/pyspark_engine.py
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
|
is_equal_than(df, rule)
¶
Filters rows in a PySpark DataFrame that do not satisfy an equality condition specified in the rule dictionary and adds a "dq_status" column with details about the rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be filtered. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - "field" (str): The name of the column to check. - "check" (str): The type of check being performed (e.g., "equal"). - "value" (Any): The value to compare against. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame with rows filtered based on the rule and an |
DataFrame
|
additional "dq_status" column describing the rule applied. |
Source code in sumeh/engine/pyspark_engine.py
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
|
is_future_date(df, rule)
¶
Filters a DataFrame to identify rows where a specified field has a date greater than the current date and adds a "dq_status" column indicating the data quality rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be checked. |
required |
rule
|
dict
|
A dictionary containing the data quality rule. It should include: - "field" (str): The name of the field to check for null values. - "check" (str): A description of the check being performed. - "value" (str): Additional information about the rule. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame filtered to include only rows where the specified |
DataFrame
|
field is null, with an additional "dq_status" column describing the rule. |
Source code in sumeh/engine/pyspark_engine.py
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
|
is_greater_or_equal_than(df, rule)
¶
Filters rows in a DataFrame where the value of a specified field is less than a given value and adds a new column "dq_status" with a formatted string indicating the rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to filter. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - "field" (str): The name of the column to check. - "check" (str): A descriptive string for the check (e.g., "greater_or_equal"). - "value" (numeric): The threshold value for the comparison. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame with rows filtered based on the rule and an additional |
DataFrame
|
"dq_status" column describing the rule applied. |
Source code in sumeh/engine/pyspark_engine.py
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
|
is_greater_than(df, rule)
¶
Filters rows in a DataFrame where the value of a specified field is less than or equal to a given threshold and adds a new column indicating the rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to filter. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field' (str): The name of the column to apply the rule on. - 'check' (str): A descriptive string for the rule (e.g., "greater_than"). - 'value' (int or float): The threshold value for the comparison. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame with rows filtered based on the rule and an |
DataFrame
|
additional column "dq_status" describing the rule applied. |
Source code in sumeh/engine/pyspark_engine.py
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
|
is_in(df, rule)
¶
Checks if the values in the specified column of a DataFrame are contained within a given set of values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input DataFrame to evaluate. |
required |
rule
|
dict
|
A dictionary containing the rule for the check. It should specify the column name and the set of values to check against. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A DataFrame with the applied rule, typically filtered or modified based on the check. |
Source code in sumeh/engine/pyspark_engine.py
673 674 675 676 677 678 679 680 681 682 683 684 685 |
|
is_in_billions(df, rule)
¶
Filters a PySpark DataFrame to include only rows where the specified field's value is greater than or equal to one billion, and adds a "dq_status" column with a formatted string indicating the field, check, and value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to filter. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field': The name of the column to check. - 'check': The type of check being performed (e.g., "greater_than"). - 'value': The threshold value for the check. |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame filtered by the rule and with an |
|
additional "dq_status" column. |
Source code in sumeh/engine/pyspark_engine.py
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
|
is_in_millions(df, rule)
¶
Filters a DataFrame to include only rows where the specified field's value is greater than or equal to 1,000,000 and adds a "dq_status" column with a formatted string indicating the rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input DataFrame to filter and modify. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include the field to check, the check type, and the value. |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame with rows filtered based on the |
|
rule and an additional "dq_status" column describing the rule applied. |
Source code in sumeh/engine/pyspark_engine.py
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
|
is_legit(df, rule)
¶
Filters a PySpark DataFrame to identify rows that do not meet a specified rule and appends a column indicating the data quality status.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be validated. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field': The name of the column to validate. - 'check': The type of check being performed (e.g., "is_legit"). - 'value': The expected value or condition for the validation. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame containing only the rows that fail the validation |
DataFrame
|
rule, with an additional column "dq_status" describing the validation status |
|
DataFrame
|
in the format "field:check:value". |
Source code in sumeh/engine/pyspark_engine.py
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 |
|
is_less_or_equal_than(df, rule)
¶
Filters rows in a PySpark DataFrame where the value of a specified field is greater than a given value and adds a new column "dq_status" with a formatted string indicating the rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to filter. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - "field" (str): The name of the column to evaluate. - "check" (str): A descriptive string for the check being performed. - "value" (numeric): The threshold value to compare against. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new PySpark DataFrame with rows filtered based on the rule and an additional |
DataFrame
|
"dq_status" column describing the rule applied. |
Source code in sumeh/engine/pyspark_engine.py
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
|
is_less_than(df, rule)
¶
Filters rows in a PySpark DataFrame where the specified field is greater than or equal to a given value and adds a new column indicating the rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to filter. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field' (str): The name of the column to apply the filter on. - 'check' (str): A descriptive string for the rule (e.g., "less_than"). - 'value' (int, float, or str): The value to compare the column against. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame with rows filtered based on the rule and an |
DataFrame
|
additional column "dq_status" describing the rule applied. |
Source code in sumeh/engine/pyspark_engine.py
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
|
is_negative(df, rule)
¶
Filters rows in the given DataFrame where the specified field is non-negative and adds a new column "dq_status" containing a formatted string with rule details.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be filtered and modified. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field' (str): The name of the column to check. - 'check' (str): A descriptive string for the check being performed. - 'value' (any): The value associated with the rule. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame with rows filtered based on the rule and an |
DataFrame
|
additional "dq_status" column describing the rule applied. |
Source code in sumeh/engine/pyspark_engine.py
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
|
is_on_friday(df, rule)
¶
Filters a PySpark DataFrame to include only rows where the specified date field falls on a Friday.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input DataFrame to filter. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It is expected to have the following keys: - 'field': The name of the column in the DataFrame to check. - 'check': A string representing the type of check (not used in this function but included for consistency). - 'value': A value associated with the rule (not used in this function but included for consistency). |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame filtered to include only rows where the specified date field |
|
corresponds to a Friday. Additionally, a new column |
|
representation of the rule applied in the format "field:check:value". |
Source code in sumeh/engine/pyspark_engine.py
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 |
|
is_on_monday(df, rule)
¶
Filters a PySpark DataFrame to include only rows where the specified date field falls on a Monday.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame. |
required |
rule
|
dict
|
A dictionary containing rule parameters. It is expected to include: - 'field': The name of the column to check. - 'check': A string representing the type of check (not used in this function). - 'value': A value associated with the rule (not used in this function). |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame filtered to include only rows where the specified |
|
date field corresponds to a Monday. Additionally, a new column "dq_status" is added, |
|
containing a concatenated string of the field, check, and value. |
Source code in sumeh/engine/pyspark_engine.py
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 |
|
is_on_saturday(df, rule)
¶
Filters a PySpark DataFrame to include only rows where the specified date field falls on a Saturday.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input DataFrame to filter. |
required |
rule
|
dict
|
A dictionary containing rule parameters. The function expects the rule to include: - 'field': The name of the column to check. - 'check': A string representing the check being performed (not used in logic, but included in the output column). - 'value': A value to include in the output column (not used in logic, but included in the output column). |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame filtered to include only rows where the specified field falls on a Saturday. |
|
Additionally, a new column "dq_status" is added, containing a string in the format "field:check:value". |
Source code in sumeh/engine/pyspark_engine.py
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 |
|
is_on_sunday(df, rule)
¶
Filters a PySpark DataFrame to include only rows where the specified date field falls on a Sunday.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input DataFrame to filter. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It is expected to include: - field (str): The name of the column to check. - check (str): A descriptive string for the check being performed. - value (str): A value to include in the "dq_status" column for context. |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame filtered to include only rows where the specified |
|
date field corresponds to a Sunday. Additionally, a "dq_status" column is added to the |
|
DataFrame, containing a string in the format "field:check:value". |
Source code in sumeh/engine/pyspark_engine.py
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 |
|
is_on_thursday(df, rule)
¶
Filters a PySpark DataFrame to include only rows where the specified date column falls on a Thursday.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The PySpark DataFrame to filter. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It is expected to include: - 'field': The name of the column to check. - 'check': A string representing the type of check (not used in the filtering logic). - 'value': A value associated with the rule (not used in the filtering logic). |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
A new PySpark DataFrame filtered to include only rows where the specified column's day of the week is Thursday. Additionally, a new column "dq_status" is added, containing a concatenated string of the field, check, and value. |
Source code in sumeh/engine/pyspark_engine.py
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 |
|
is_on_tuesday(df, rule)
¶
Filters a PySpark DataFrame to include only rows where the day of the week for a specified date column is Tuesday. Adds a new column 'dq_status' to indicate the validation status.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It is expected to include: - 'field': The name of the column to check. - 'check': A string describing the check being performed. - 'value': A value associated with the check. |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame filtered to include only rows |
|
where the specified column corresponds to Tuesday, with an additional |
|
'dq_status' column describing the validation status. |
Source code in sumeh/engine/pyspark_engine.py
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 |
|
is_on_wednesday(df, rule)
¶
Filters a PySpark DataFrame to include only rows where the specified date field falls on a Wednesday.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It is expected to have the following keys: - 'field': The name of the column in the DataFrame to check. - 'check': A string representing the type of check (not used in the logic but included for status reporting). - 'value': A value associated with the rule (not used in the logic but included for status reporting). |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame filtered to include only rows where the specified field corresponds to a Wednesday. |
|
Additionally, a new column 'dq_status' is added, which contains a string in the format "field:check:value". |
Source code in sumeh/engine/pyspark_engine.py
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 |
|
is_on_weekday(df, rule)
¶
Filters a PySpark DataFrame to include only rows where the specified date field falls on a weekday (Monday to Friday). Adds a new column 'dq_status' to indicate the rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It is expected to include the following keys: - 'field': The name of the column to check. - 'check': A string representing the type of check (used for logging). - 'value': A value associated with the rule (used for logging). |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame filtered to include only rows where |
|
the specified date field is a weekday, with an additional 'dq_status' column |
|
describing the rule applied. |
Source code in sumeh/engine/pyspark_engine.py
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 |
|
is_on_weekend(df, rule)
¶
Filters a PySpark DataFrame to include only rows where the specified date field falls on a weekend (Saturday or Sunday). Additionally, adds a new column 'dq_status' to indicate the rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It is expected to have the following keys: - 'field': The name of the date column to check. - 'check': A string representing the type of check (not used in logic). - 'value': A string representing the value to include in the 'dq_status' column. |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame filtered to include only rows where |
|
the specified date field is on a weekend, with an additional 'dq_status' column. |
Source code in sumeh/engine/pyspark_engine.py
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 |
|
is_past_date(df, rule)
¶
Filters a DataFrame to identify rows where a specified field has a date lower than the current date and adds a "dq_status" column indicating the data quality rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be checked. |
required |
rule
|
dict
|
A dictionary containing the data quality rule. It should include: - "field" (str): The name of the field to check for null values. - "check" (str): A description of the check being performed. - "value" (str): Additional information about the rule. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame filtered to include only rows where the specified |
DataFrame
|
field is null, with an additional "dq_status" column describing the rule. |
Source code in sumeh/engine/pyspark_engine.py
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
is_positive(df, rule)
¶
Filters a DataFrame to identify rows where the specified field does not satisfy a positive check and adds a "dq_status" column with details of the rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be filtered. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - "field" (str): The name of the column to check. - "check" (str): The type of check being performed (e.g., "positive"). - "value" (any): The value associated with the rule (not directly used in this function). |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame filtered to include only rows where the specified field is less than 0, |
DataFrame
|
with an additional "dq_status" column describing the rule applied. |
Source code in sumeh/engine/pyspark_engine.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|
is_primary_key(df, rule)
¶
Determines if a given DataFrame column or set of columns satisfies the primary key constraint.
A primary key constraint requires that the specified column(s) in the DataFrame have unique values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The PySpark DataFrame to be checked. |
required |
rule
|
dict
|
A dictionary containing the rules or specifications for identifying the primary key. Typically, this includes the column(s) to be checked for uniqueness. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
True if the specified column(s) in the DataFrame satisfy the primary key constraint, False otherwise. |
Source code in sumeh/engine/pyspark_engine.py
800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
|
is_t_minus_1(df, rule)
¶
Filters the input DataFrame to include only rows where the specified field matches the date corresponding to "T-1" (yesterday). Adds a new column "dq_status" to indicate the rule applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input DataFrame to be filtered. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field': The name of the column to be checked. - 'check': The type of check being performed (not used in filtering but included in "dq_status"). - 'value': The value associated with the check (not used in filtering but included in "dq_status"). |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame filtered by the rule and with an additional "dq_status" column. |
Source code in sumeh/engine/pyspark_engine.py
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 |
|
is_t_minus_2(df, rule)
¶
Filters the input DataFrame to include only rows where the specified field matches the date that is two days prior to the current date. Adds a new column 'dq_status' to indicate the data quality status.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input DataFrame to be filtered. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field': The name of the column to be checked. - 'check': A string representing the type of check (not used in filtering). - 'value': A value associated with the check (not used in filtering). |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame filtered by the rule and with an additional |
|
'dq_status' column indicating the field, check, and value. |
Source code in sumeh/engine/pyspark_engine.py
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 |
|
is_t_minus_3(df, rule)
¶
Filters the input DataFrame to include only rows where the specified field matches the date that is three days prior to the current date. Adds a new column 'dq_status' to indicate the data quality status.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input DataFrame to be filtered. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field': The name of the column to be checked. - 'check': A string representing the type of check (not used in filtering). - 'value': A value associated with the rule (not used in filtering). |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame filtered by the rule and with an |
|
additional 'dq_status' column. |
Source code in sumeh/engine/pyspark_engine.py
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 |
|
is_today(df, rule)
¶
Filters a DataFrame to include only rows where the specified field matches the current date.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input DataFrame to filter. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It is expected to have the following keys: - 'field': The name of the column to check. - 'check': A string representing the type of check (not used in this function). - 'value': A value associated with the rule (not used in this function). |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A new DataFrame filtered by the current date and with an additional column "dq_status" indicating the rule applied in the format "field:check:value". |
Source code in sumeh/engine/pyspark_engine.py
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 |
|
is_unique(df, rule)
¶
Checks for uniqueness of a specified field in a PySpark DataFrame based on the given rule.
This function identifies rows where the specified field is not unique within the DataFrame.
It adds a new column dq_status
to the resulting DataFrame, which contains information
about the field, the check type, and the value from the rule.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to check for uniqueness. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include:
- |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame containing rows where the specified field is not unique. |
DataFrame
|
The resulting DataFrame includes a |
Example
rule = {"field": "column_name", "check": "unique", "value": "some_value"} result_df = is_unique(input_df, rule)
Source code in sumeh/engine/pyspark_engine.py
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
|
is_yesterday(df, rule)
¶
Filters a PySpark DataFrame to include only rows where the specified field matches yesterday's date. Adds a new column 'dq_status' to indicate the data quality status.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field': The name of the column to check. - 'check': The type of check being performed (used for status message). - 'value': Additional value information (used for status message). |
required |
Returns:
Type | Description |
---|---|
pyspark.sql.DataFrame: A filtered DataFrame with an additional 'dq_status' column. |
Source code in sumeh/engine/pyspark_engine.py
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 |
|
not_contained_in(df, rule)
¶
Filters rows in a DataFrame where the specified field's value is in a given list and adds a column indicating the data quality status.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to filter. |
required |
rule
|
dict
|
A dictionary containing the rule parameters. It should include: - 'field': The name of the column to check. - 'check': A string representing the type of check (e.g., "not_contained_in"). - 'value': A string representation of a list (e.g., "[value1,value2,...]") containing the values to check against. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame with rows filtered based on the rule and an |
DataFrame
|
additional column "dq_status" indicating the data quality status in the |
|
DataFrame
|
format "field:check:value". |
Source code in sumeh/engine/pyspark_engine.py
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
|
not_in(df, rule)
¶
Filters rows in a DataFrame where the specified rule is not contained.
This function delegates the operation to the not_contained_in
function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input DataFrame to be filtered. |
required |
rule
|
dict
|
A dictionary specifying the rule to apply for filtering. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame with rows that do not match the specified rule. |
Source code in sumeh/engine/pyspark_engine.py
713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
|
satisfies(df, rule)
¶
Filters a PySpark DataFrame based on a rule and adds a data quality status column.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be filtered. |
required |
rule
|
dict
|
A dictionary containing the filtering rule. It should include: - 'field': The name of the column to apply the filter on. - 'check': The type of check to perform (currently unused in this implementation). - 'value': The expression in the pattern of pyspark.sql.functions.expr. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame filtered based on the rule, with an additional column |
DataFrame
|
"dq_status" that describes the rule applied in the format "field:check:value". |
Source code in sumeh/engine/pyspark_engine.py
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 |
|
summarize(df, rules, total_rows)
¶
Summarizes data quality results based on provided rules and total rows.
This function processes a DataFrame containing data quality statuses, applies rules to calculate violations, and generates a summary DataFrame with metrics such as pass rate, status, and other relevant information.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input DataFrame containing a column |
required |
rules
|
List[Dict]
|
A list of dictionaries representing the data quality
rules. Each dictionary should define the |
required |
total_rows
|
int
|
The total number of rows in the input DataFrame. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A summary DataFrame containing the following columns: - id: A unique identifier for each row. - timestamp: The timestamp when the summary was generated. - check: The type of check performed (e.g., "Quality Check"). - level: The severity level of the check (e.g., "WARNING"). - column: The column name associated with the rule. - rule: The rule applied to the column. - value: The value associated with the rule. - rows: The total number of rows in the input DataFrame. - violations: The number of rows that violated the rule. - pass_rate: The percentage of rows that passed the rule. - pass_threshold: The threshold for passing the rule. - status: The overall status of the rule (e.g., "PASS" or "FAIL"). |
Source code in sumeh/engine/pyspark_engine.py
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 |
|
validate(df, rules)
¶
Validates a DataFrame against a set of rules and returns the validation results.
This function applies a series of validation rules to the input DataFrame. Each rule is expected to be a dictionary containing the parameters required for validation. The function generates two DataFrames as output: 1. A summarized result DataFrame with aggregated validation statuses. 2. A raw result DataFrame containing detailed validation results.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to validate. |
required |
rules
|
list[dict]
|
A list of dictionaries, where each dictionary defines a validation rule.
Each rule should include the following keys:
- |
required |
Returns:
Type | Description |
---|---|
Tuple[DataFrame, DataFrame]
|
Tuple[DataFrame, DataFrame]: A tuple containing: - result (DataFrame): A DataFrame with aggregated validation statuses. - raw_result (DataFrame): A DataFrame with detailed validation results. |
Raises:
Type | Description |
---|---|
KeyError
|
If a rule references a validation function that does not exist in the global scope. |
Notes
- The
dq_status
column is used to store validation statuses. - The function assumes that the validation functions are defined in the global scope and are accessible by their names.
- The
concat_ws
function is used to concatenate multiple validation statuses into a single string for each record in the summarized result.
Example
from pyspark.sql import SparkSession spark = SparkSession.builder.getOrCreate() df = spark.createDataFrame([(1, "Alice"), (2, "Bob")], ["id", "name"]) rules = [{"field": "id", "rule_name": "validate_positive", "value": None}] result, raw_result = validate(df, rules)
Source code in sumeh/engine/pyspark_engine.py
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 |
|
validate_date_format(df, rule)
¶
Filters a DataFrame to identify rows where a specified field has wrong date format based in the format from the rule and adds a "dq_status" column indicating the data quality rule applied.
YYYY = full year, ex: 2012; YY = only second part of the year, ex: 12; MM = Month number (1-12); DD = Day (1-31);
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The input PySpark DataFrame to be checked. |
required |
rule
|
dict
|
A dictionary containing the data quality rule. It should include: - "field" (str): The name of the field to check for null values. - "check" (str): A description of the check being performed. - "value" (str): Additional information about the rule. |
required |
Returns:
Name | Type | Description |
---|---|---|
DataFrame |
DataFrame
|
A new DataFrame filtered to include only rows where the specified |
DataFrame
|
field is null, with an additional "dq_status" column describing the rule. |
Source code in sumeh/engine/pyspark_engine.py
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
|
validate_schema(df, expected)
¶
Validates the schema of a PySpark DataFrame against an expected schema.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
The PySpark DataFrame whose schema is to be validated. |
required |
expected
|
list
|
The expected schema represented as a list of tuples, where each tuple contains the column name and its data type and a boolean, if the column is nullable or not. |
required |
Returns:
Type | Description |
---|---|
Tuple[bool, List[Tuple[str, str]]]
|
Tuple[bool, List[Tuple[str, str]]]: A tuple containing: - A boolean indicating whether the schema matches the expected schema. - A list of tuples representing the mismatched columns, where each tuple contains the column name and the reason for the mismatch. |
Source code in sumeh/engine/pyspark_engine.py
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 |
|